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Motivation for Viscous Hydrodynamics

Usually | give a long introduction here...
...but you're all experts!
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Conformal Hydro

Why conformal hydro?

@ I'm interested in the effects of shear viscosity 7
@ There’s also bulk viscosity ¢, which comes from

C~Th
@ Ignoring effects from ¢: set { = 0. Implies
T/ =0

@ Conformal invariance!
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Conformal Hydro

Conformal Viscous Hydro

@ Baier, PR, Son, Starinets, Stephanov, arXiv:0712.2451.:
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@ Invariant under conformal transformations g, — e~2g,,,
@ Most general conformal expression to 2nd order in
gradients
@ Five 2nd order coefficients m, &, A1, A2, A3 can be matched

to weak coupling (Boltzmann) or strong coupling (M = 4
SYM) plasmas
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Conformal Hydro

Conformal Viscous Hydro vs full Israel-Stewart
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@ Only one 2nd order coefficient: T (A2 = —2nm)

@ Cannot be matched to strongly coupled theories (N = 4
SYM)
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Conformal Hydro

Conformal Viscous Hydro vs full Israel-Stewart

@ Both have finite propagation speeds

_n
(e +p)

Vmax =

@ Both have vmax < 1 for weak coupling

@ Conformal hydro for strong coupling (M = 4 SYM) also has
Vmax < 1:

22-In2)p  7n \ n

mETp T M T e

nin2
= — :0
A2 T , A3

BRSSS07, Bhattacharyya e.a. arXiv:0712.2456,
Natsuume & Okamura arXiv:0712.2916
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Why can IS not be matched to strong coupling? (1/2)

Calculate Green'’s function for tensor metric perturbation
d0xy(t,z) and sound dispersion in hydro (BRSSS)

G)éy,xy = p—inw—l—nmwz—g[wz—i-kz}—i-.--,
. r r
w = csk—lrk2+<c§m—>k3+...,
Cs 2
2 _
where I' = 2L, IS amounts to x = 0.
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Conformal Hydro

Why can IS not be matched to strong coupling? (2/2)

Calculate Green'’s function for tensor metric perturbation
d0xy (t,z) and sound dispersion using AdS/CFT:

2N2T 4 273 2T2

- 7rNgCT _WNET iw—Nig —? +k?+w?In2| + ...,
1 i, 3-2In2 .,

V3 6nT 2472,/3T2

Consistency requires x # 0. IS is not general enough!

Xy, Xy
GR
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Conformal Hydro
Where does this mismatch come from?

@ Differences between IS and BRSSS show up only at 2nd
order in gradients

@ One way to derive IS is from Boltzmann equation.
Boltzmann equation is itself a gradient expansion (to first
order) of underlying QFT. 2nd order beyond accuracy of
coarse-graining!

@ Another way to derive IS is from requiring d,s* > 0. IS
require positivity for arbitrarily strong gradients (high
momenta). Hydrodynamics: 2nd order always small
compared to 1st order, positivity guaranteed.

Paul Romatschke Conformal Viscous Hydrodynamics



Conformal Hydro
Conformal Hydro and Heavy-lon Collisions

@ Most general, causal, relativistic conformal hydro has five
2nd order transport coefficients m, k, A1, A2, A3

@ x multiplies Ricci and Riemann tensor: not needed in flat
space

@ )\, A3 multiply vorticity tensor: for boost-invariant hydro,
dynamics is only in transverse plane (2d). Can derive
relativistic vorticity equation (PR+UR, arXiv:0706.1522)

Dp Du™
€E+pP ur

D +w¥ |V, Ut + = O(n3).

For HIC, term in []'s is usually positiv, so w*¥ = 0 is a stable

fix point of relativistic (ideal) hydro. Do not expect w*¥ to be
large for viscous hydro, so A,, A3 are not needed.
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Conformal Hydro and Heavy-lon Collisions
Dependence on 7, A1 (from M. Luzum+PR, 0804.4015)

(b)
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Weak: m = 6%, A\ = 0; Strong: Ty = 1.3k, A\ = 5%
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Conformal Hydro and Heavy-lon Collisions —
Summary

@ 2nd order conformal hydro theory is clean

@ 2nd order conformal hydro is useful for HIC because
evolution depends effectively only on one parameter:
viscosity
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Conformal Hydro and Heavy-lon Collisions —

Summary

@ 2nd order conformal hydro theory is clean

@ 2nd order conformal hydro is useful for HIC because
evolution depends effectively only on one parameter:
viscosity

@ But extracting n/s from experiment is a mess!
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Things to know about Hydro @ RHIC

For any hydrodynamic model of a heavy-ion collision

@ Hydrodynamics = differential equations. Need to fix
initial/lboundary conditions!
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Things to know about Hydro @ RHIC

For any hydrodynamic model of a heavy-ion collision

@ Hydrodynamics = differential equations. Need to fix
initial/lboundary conditions!

@ the time when to start the hydrodynamic evolution

@ the initial distribution of energy density (Glauber? CGC?)
@ the equation of state for QCD (lattice!)

@ the freeze-out procedure (Cooper-Frye?)
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Things to know about Hydro @ RHIC

For any hydrodynamic model of a heavy-ion collision

@ Hydrodynamics = differential equations. Need to fix
initial/lboundary conditions!

@ the time when to start the hydrodynamic evolution

@ the initial distribution of energy density (Glauber? CGC?)
@ the equation of state for QCD (lattice!)

@ the freeze-out procedure (Cooper-Frye?)

@ There is much more to RHIC hydro than just fluid
dynamics!
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Elliptic flow (min.bias)

Glauber
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PR+UR, PRL99, M. Luzum+PR,arXiv0804.4015
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Conformal Hydro

Elliptic flow (min.bias)

CGC
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M. Luzum+PR,arXiv0804.4015
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Elliptic flow (integrated)

Glauber
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Conformal Hydro

Elliptic flow (integrated)

CGC
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0.04F

M. Luzum+PR,arXiv0804.4015
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Eccentricity: Glauber vs CGC

[r N —— Glauber| ]
0.5 N — = CGC |
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CGC a la Drescher, Dumitru, Hayashigaki, Nara
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Conformal Hydro

Multiplicity (Glauber)

Glauber
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Conformal Hydro

Multiplicity (CGC)

CGC
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Conformal Hydro

Mean transverse momentum (Glauber)

Glauber

400

1000 protons ? -‘%_‘ %— _% ?. E. — -
= 800 E;% kaons h-_. ]
[}

2 600 -
/:;[.T P -l-'—i -'-'E—' ‘-E'—'
v 5 8 ¢ 3
400 éﬂ . pions —
I n/s=10
— « N/5=0.08
200 . = M/s=0.16]
l l L
0 100 200 300
N

Paul Romatschke

Conformal Viscous Hydrodynamics



Conformal Hydro

Mean transverse momentum (CGC)

CGC
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Early Thermalization

(a)
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Conformal Hydro

Early Thermalization

(b)
03F|= = . T,=2 fm/c I I
By pe— 10=1 fm/c
0.25F| = = 7,=0.5 fm/c
L / /
0.2} 57
o [ /,
" 0.15F 2
B /‘A
0.1F v o
0.05F :
1 N 1 1
% 1 2 3
py[GeV]

Paul Romatschke Conformal Viscous Hydrodynamics




Summary: Status of /s at RHIC

@ Our hydrodynamic model seems to match RHIC data for
n/s ~ 0.1 + 0.1(theory) + 0.08(experimeny

@ Biggest theory uncertainty from unknown initial state
@ Significant uncertainty from experiment (non-flow!)

@ With (non-flow corrected) data, KSS bound is consistent
with RHIC data, for both Glauber and CGC
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Summary: Status of /s at RHIC

@ Our hydrodynamic model seems to match RHIC data for
n/s ~ 0.1 + 0.1(theory) + 0.08(experimeny

@ Biggest theory uncertainty from unknown initial state
@ Significant uncertainty from experiment (non-flow!)

@ With (non-flow corrected) data, KSS bound is consistent
with RHIC data, for both Glauber and CGC

To check KSS bound at RHIC, need better data& better hydro!
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Backup slides
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Conformal Hydro

Speed of Sound from Laine and Schroder, PRD73
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Dependence on 7y
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Conformal Hydro

Backup: Multiplicity in Viscous Hydro

dNr visc /AN ideal | ONk visc / ANk ideal
i v M R
n/s = 0.08 1.06 1.06
n/s = 0.16 1.12 1.12
n/s =0.24 1.18 1.19
n/s = 0.32 1.23 1.23
n/s = 0.40 1.28 1.28

Viscous Hydro creates ~ 0.757/s more final multiplicity!
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Early Thermalization
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